Distributivity of Cohen forcing in larger universes

Radek Honzik http://www.logika.ff.cuni/radek radek.honzik@ff.cuni.cz Charles University, Department of Logic

Hejnice Winter School 2011, February 3

General setting

Let $V \subseteq W$ be two transitive models of set theory with the same cardinals up to and including κ (κ regular). Let $P \in V$ be the Cohen forcing Add(κ , 1) as defined in V.

Question. Is *P* still κ -distributive (non-collapsing) over *W*?

Clearly, the answer depends on the relationship between V and W. The question is interesting when $[\kappa]^{<\kappa}$ of W is *not* included in V, or when cofinalities change.

Product forcing: Example 1.

Let GCH hold in V and let κ be a regular cardinal in V. Let $Q = \operatorname{Add}(\kappa, \lambda)$, where λ is any ordinal > 0, and $P = \operatorname{Add}(\kappa^+, 1)$. Both P and Q are defined in V.

Claim 1 *P* is still κ^+ -distributive over V^Q (Easton's lemma).

It follows that the preservation of distributivity does not depend simply on how many subsets of κ are missing from V.

Product forcing: Example 2.

(Shelah) There are two proper forcing notions P and Q, where P may be taken to be Add $(\omega_1, 1)$ such that $Q \times P$ collapses ω_1 .

In particular,

Claim 2 P is not ω_1 -distributive over V^Q .

Large cardinals

Let M be a transitive class. We say that a non-trivial (not an identity) $j: V \to M$ is elementary if

$$\varphi(x_1,\ldots,x_n) \to (\varphi(j(x_1),\ldots,j(x_n)))^M$$

is true for every formula φ and x_1, \ldots, x_n in V.

Kunen's result implies that $M \neq V$.

V has its isomorphic copy as a non-transitive proper subclass of M, denoted as j[V]. The unique transitive collapse of j[V] is V.

If there exists $j: V \to M$ with critical point κ , then κ is called a *measurable cardinal*.

Product forcing: Example 3. Let κ be a measurable cardinal and let $Q = Prk(\kappa)$ be the plain Prikry forcing which adds an ω -cofinal sequence through κ , without adding new bounded subsets of $H(\kappa)$. Let $P = Add(\kappa, 1)$. Both Q and P are defined in V. Then

Claim 3 *P* is not κ -distributive over V^Q , in fact $Q \times P$ collapses all cardinals in the interval $(\omega, \kappa]$.

Note that in this case $Q \times P$ is isomorphic to Q * P.

Example 4: Elementary embeddings.

Let $j: V \to M$ be an elementary embedding, and $P = \text{Add}(\lambda, 1)$ for some V-regular cardinal λ . P is defined in M.

Question. When is $P \lambda$ -distributive over V?

Note that in this case V is not a generic extension of the smaller model M, and hence new methods for answering the question above seem to be necessary.

Why is the above question interesting?

We say that $j: V \to M$ with critical point κ is κ^{++} -correct, if:

(i) *M* is closed under κ -sequences in *V*, (ii) $(\kappa^{++})^M = \kappa^{++}$.

Existence of such an embedding follows, and is in fact equivalent in terms of consistency, to an existence of κ with $o(\kappa) = \kappa^{++}$.

Question. Assume GCH. Let $j: V \to M$ be κ^{++} -correct embedding. Let $P = \text{Add}(\kappa^{++}, 1)^M$. Is $P \kappa^{++}$ -distributive over V?

Lemma 4 (Key lemma) Assume GCH and $j: V \to M$ be a κ^{++} -correct embedding. Then there is a forcing \mathbb{P} such that if G is \mathbb{P} -generic over V, then there is a κ^{++} -correct embedding $j^*: V[G] \to M^*$ such that

 $\operatorname{Add}(\kappa^{++},1)^{M^*}$ is κ^{++} -distributive over V[G].

This lemma is crucial in the proof of:

Theorem 5 (Sy Friedman, H., '11) (A simple version) The following are equiconsistent:

(i) There is κ such that $o(\kappa) = \kappa^{++}$.

(ii) There is κ such that κ is measurable, $2^{\kappa} = \kappa^{++}$ and $2^{\alpha} = \alpha^{++}$ for every regular cardinal $\alpha < \kappa$.

Why is this theorem interesting?

The continuum function

Consider the function from cardinals to cardinals such that

 $\kappa \mapsto 2^{\kappa}$.

We call this the *continuum function*. The continuum function at κ depends on the continuum function on cardinals $< \kappa$ if κ is:

(i) a singular (strong limit) cardinal of uncountable cofinality,(ii) a large cardinal (such as a measurable cardinal).

If κ is a regular (not large) cardinal, then 2^{κ} does not depend on $\alpha < \kappa$ (Easton).

Ad (i). (Silver) Suppose κ is a strong limit singular cardinal of uncountable cofinality. If $2^{\alpha} = \alpha^{+}$ for stationary many regular $\alpha < \kappa$, then $2^{\kappa} = \kappa^{+}$.

Ad (ii). Suppose κ is a measurable cardinal. If the set of all regular cardinals $\alpha < \kappa$ such that $2^{\alpha} = \alpha^{+}$ is the set of all regulars in a club in κ , then $2^{\kappa} = \kappa^{+}$.

Thus there is a delicate connection between strong limit cardinals of uncountable cofinality, and large cardinals. (Gitik). The following are equiconsistent:

(i) There exists κ with $o(\kappa) = \kappa^{++}$.

(ii) There exists a measurable cardinal κ such that $2^{\kappa} = \kappa^{++}$.

Compare with

(ii*) [F-H] There is κ such that κ is measurable, $2^{\kappa} = \kappa^{++}$ and $2^{\alpha} = \alpha^{++}$ for every regular cardinal $\alpha < \kappa$.

Key Lemma is one of the main ingredients in proving (ii*) from (i).

Proof of theorem

Key lemma. Assume GCH and $j: V \to M$ be a κ^{++} -correct embedding. Then there is a forcing \mathbb{P} such that if G is \mathbb{P} -generic over V, then there is a κ^{++} -correct embedding $j^*: V[G] \to M^*$ such that $Add(\kappa^{++}, 1)^{M^*}$ is κ^{++} -distributive over V[G].

Sketch of proof of Key Lemma. The proof is inspired by an idea by U. Abraham.

Set \mathbb{P} be be a reverse Easton iteration of $\operatorname{Add}(\alpha^+, \alpha^{++})$ for each inaccessible cardinal $\alpha \leq \kappa$. Let G be \mathbb{P} -generic, and let us write $G = G_{\kappa} * g$ where g is $\operatorname{Add}(\kappa^+, \kappa^{++})^{V[G_{\kappa}]}$ -generic over $V[G_{\kappa}]$. By standard arguments j lifts to $j^* : V[G] \to M[j^*(G)] = M^*$.

We argue that $P = \operatorname{Add}(\kappa^{++}, 1)^{M[G]} = \operatorname{Add}(\kappa^{++}, 1)^{M^*}$ is still κ^{++} -distributive over V[G].

Let $p \Vdash \dot{f} : \kappa^+ \to \text{On hold in } V[G]$, for $p \in P$. Let N be an elementary substructure of some $H(\theta)^{V[G]}$ of size κ^+ , closed under κ -sequences, and transitive below κ^{++} , containing P, p, \dot{f} .

N is not in M[G], but look at $P \cap N$. Let \overline{N} be the transitive collapse of N by π . Then $\pi(P) = P \cap N$, $\pi(P)$ is in M[G] (because P is definable in $H(\kappa^{++})$ of M[G], which can be viewed as $L_{\kappa^{++}}[B]$ for some $B \subseteq \kappa^{++}$ in M[G], and so $\pi(P)$ is in $L_{N \cap \kappa^{++}}[B \cap N \cap \kappa^{++}] \subseteq M[G]$).

Now, we show that all dense open subsets of \overline{N} in \overline{N} can be met by a decreasing κ^+ sequence $\langle p_i | i < \kappa^+ \rangle$ of condition in $\pi(P)$, the sequence being defined in M[G]. Then $q = \lim_i p_i$ is in M[G] and decides f. Note that \overline{N} is not in M[G], so how can we obtain such a \overline{N} -generic sequence in M[G]?

We use the "guiding generic" g. By a density argument, the guiding generic g makes sure that we hit all dense open sets in \overline{N} .

In more detail, choose $\gamma < \kappa^{++}$ such that $V[G_{\kappa} * g \upharpoonright \gamma]$ and $M[G_{\kappa} * g \upharpoonright \gamma]$ contain all necessary parameters:

 $-V[G_{\kappa} * g \upharpoonright \gamma]$ contains \overline{N} , $-M[G_{\kappa} * g \upharpoonright \gamma]$ contains $\pi(P)$ and an enumeration $\langle p'_i | i < \kappa^+ \rangle$ of $\pi(P)$.

This is possible by κ^{++} -cc of Add $(\kappa^{+}, \kappa^{++})$.

Define $\langle p_i | i < \kappa^+ \rangle$ in $M[G_{\kappa} * g \upharpoonright \gamma][g(\gamma)]$:

$$p_{i+1} = \begin{cases} p'_{g(\gamma)(i)} & \text{if } p'_{g(\gamma)(i)} \text{ extends } p_i, \\ p_i & \text{otherwise.} \end{cases}$$

Finally, in $V[G_{\kappa} * g \upharpoonright \gamma]$ one argues that if $D \in \overline{N}$ is dense in $\pi(P)$, then the following set is dense in $Add(\kappa^+, 1)$:

$$\bar{D} = \{ q \mid q \Vdash ``\exists i < \kappa^+, p_i \in D'' \}.$$

Proof, cont'd.

Assume GCH, and let $j: V \to M$ be κ^{++} -correct. Let $P = \operatorname{Add}(\kappa^{++}, \kappa^{+4})^M$.

Claim 6 *P* usually collapses κ^{++} to κ^{+} if forced over *V*.

Proof. Use an extender ultrapower representation which gives that $(\kappa^{+4})^M$ has cof κ^+ in V.

Lemma 7 (2nd Key Lemma) If h is $Add(\kappa^{++}, 1)^{M[G]}$ -generic over V[G], then one can "stretch" h into some some h' such that h' is $Add(\kappa^{++}, \kappa^{+4})^{M[G]}$ -generic over M[G].

Proof. Find a "locally correct" bijection $\pi : (\kappa^{+4})^M \to \kappa^{++}$ such that if $X \subseteq (\kappa^{+4})^M$ in M has size $\leq \kappa^{++}$ in M, then $\pi \upharpoonright X$ is in M.

Some generalizations:

(A vague version of theorem) The following are equiconsistent:
(i) There is κ such that o(κ) = κ⁺⁺.

(ii) There is κ such that κ is measurable, $2^{\kappa} = \kappa^{++}$ and the continuum function on regular cardinals below κ is anything one wants (consistent with the provable limitations).

• The above generalizes to all $n < \omega$, with $o(\kappa) = \kappa^{+n}$.

The case of $o(\kappa) = \kappa^{+\beta}$ for $\beta \ge \omega$ is more involved, but we expect no difficulties.

- Question. Is there a κ^{++} -correct $j: V \to M$ such that $Add(\kappa^{++}, 1)^M$ is not κ^{++} -distributive over V?
- Classification of embeddings by preservation of combinatorial properties of forcing notions.